Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(8000): 881-890, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297124

RESUMO

The pace of human brain development is highly protracted compared with most other species1-7. The maturation of cortical neurons is particularly slow, taking months to years to develop adult functions3-5. Remarkably, such protracted timing is retained in cortical neurons derived from human pluripotent stem cells (hPSCs) during in vitro differentiation or upon transplantation into the mouse brain4,8,9. Those findings suggest the presence of a cell-intrinsic clock setting the pace of neuronal maturation, although the molecular nature of this clock remains unknown. Here we identify an epigenetic developmental programme that sets the timing of human neuronal maturation. First, we developed a hPSC-based approach to synchronize the birth of cortical neurons in vitro which enabled us to define an atlas of morphological, functional and molecular maturation. We observed a slow unfolding of maturation programmes, limited by the retention of specific epigenetic factors. Loss of function of several of those factors in cortical neurons enables precocious maturation. Transient inhibition of EZH2, EHMT1 and EHMT2 or DOT1L, at progenitor stage primes newly born neurons to rapidly acquire mature properties upon differentiation. Thus our findings reveal that the rate at which human neurons mature is set well before neurogenesis through the establishment of an epigenetic barrier in progenitor cells. Mechanistically, this barrier holds transcriptional maturation programmes in a poised state that is gradually released to ensure the prolonged timeline of human cortical neuron maturation.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas , Células-Tronco Neurais , Neurogênese , Neurônios , Adulto , Animais , Humanos , Camundongos , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Fatores de Tempo , Transcrição Gênica
2.
Cell Stem Cell ; 31(2): 196-211.e6, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237586

RESUMO

COVID-19 patients commonly present with signs of central nervous system and/or peripheral nervous system dysfunction. Here, we show that midbrain dopamine (DA) neurons derived from human pluripotent stem cells (hPSCs) are selectively susceptible and permissive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. SARS-CoV-2 infection of DA neurons triggers an inflammatory and cellular senescence response. High-throughput screening in hPSC-derived DA neurons identified several FDA-approved drugs that can rescue the cellular senescence phenotype by preventing SARS-CoV-2 infection. We also identified the inflammatory and cellular senescence signature and low levels of SARS-CoV-2 transcripts in human substantia nigra tissue of COVID-19 patients. Furthermore, we observed reduced numbers of neuromelanin+ and tyrosine-hydroxylase (TH)+ DA neurons and fibers in a cohort of severe COVID-19 patients. Our findings demonstrate that hPSC-derived DA neurons are susceptible to SARS-CoV-2, identify candidate neuroprotective drugs for COVID-19 patients, and suggest the need for careful, long-term monitoring of neurological problems in COVID-19 patients.


Assuntos
COVID-19 , Células-Tronco Pluripotentes , Humanos , SARS-CoV-2 , Neurônios Dopaminérgicos , Sistema Nervoso Central
3.
J Neurosci ; 44(3)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050142

RESUMO

ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis using data from human autopsy tissue (consisting of males and females) and female human cell lines. Co-immunoprecipitation (co-IP) of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA-splicing proteins. ZCCHC17 knockdown results in widespread RNA-splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4-dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find a significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that the maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.


Assuntos
Doença de Alzheimer , Resiliência Psicológica , Feminino , Humanos , Masculino , Doença de Alzheimer/metabolismo , Cognição , Neurônios/metabolismo , RNA , Splicing de RNA/genética , Proteínas tau/metabolismo
4.
bioRxiv ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034664

RESUMO

Ongoing, first-in-human clinical trials illustrate the feasibility and translational potential of human pluripotent stem cell (hPSC)-based cell therapies in Parkinson's disease (PD). However, a major unresolved challenge in the field is the extensive cell death following transplantation with <10% of grafted dopamine neurons surviving. Here, we performed a pooled CRISPR/Cas9 screen to enhance survival of postmitotic dopamine neurons in vivo . We identified p53-mediated apoptotic cell death as major contributor to dopamine neuron loss and uncovered a causal link of TNFa-NFκB signaling in limiting cell survival. As a translationally applicable strategy to purify postmitotic dopamine neurons, we performed a cell surface marker screen that enabled purification without the need for genetic reporters. Combining cell sorting with adalimumab pretreatment, a clinically approved and widely used TNFa inhibitor, enabled efficient engraftment of postmitotic dopamine neurons leading to extensive re-innervation and functional recovery in a preclinical PD mouse model. Thus, transient TNFa inhibition presents a clinically relevant strategy to enhance survival and enable engraftment of postmitotic human PSC-derived dopamine neurons in PD. Highlights: In vivo CRISPR-Cas9 screen identifies p53 limiting survival of grafted human dopamine neurons. TNFα-NFκB pathway mediates p53-dependent human dopamine neuron deathCell surface marker screen to enrich human dopamine neurons for translational use. FDA approved TNF-alpha inhibitor rescues in vivo dopamine neuron survival with in vivo function.

5.
bioRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993746

RESUMO

ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's Disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis. Co-immunoprecipitation of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA splicing proteins. ZCCHC17 knockdown results in widespread RNA splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4 dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.

6.
Nat Commun ; 13(1): 4444, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915085

RESUMO

During the early stages of Alzheimer's disease (AD) in both mouse models and human patients, soluble forms of Amyloid-ß 1-42 oligomers (Aß42o) trigger loss of excitatory synapses (synaptotoxicity) in cortical and hippocampal pyramidal neurons (PNs) prior to the formation of insoluble amyloid plaques. In a transgenic AD mouse model, we observed a spatially restricted structural remodeling of mitochondria in the apical tufts of CA1 PNs dendrites corresponding to the dendritic domain where the earliest synaptic loss is detected in vivo. We also observed AMPK over-activation as well as increased fragmentation and loss of mitochondrial biomass in Ngn2-induced neurons derived from a new APPSwe/Swe knockin human ES cell line. We demonstrate that Aß42o-dependent over-activation of the CAMKK2-AMPK kinase dyad mediates synaptic loss through coordinated phosphorylation of MFF-dependent mitochondrial fission and ULK2-dependent mitophagy. Our results uncover a unifying stress-response pathway causally linking Aß42o-dependent structural remodeling of dendritic mitochondria to synaptic loss.


Assuntos
Doença de Alzheimer , Mitofagia , Proteínas Quinases Ativadas por AMP/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Dinâmica Mitocondrial , Fragmentos de Peptídeos , Sinapses/metabolismo
7.
Res Sq ; 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34031650

RESUMO

COVID-19 patients commonly present with neurological signs of central nervous system (CNS)1-3 and/or peripheral nervous system dysfunction4. However, which neural cells are permissive to infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been controversial. Here, we show that midbrain dopamine (DA) neurons derived from human pluripotent stem cells (hPSCs) are selectively permissive to SARS-CoV-2 infection both in vitro and upon transplantation in vivo, and that SARS-CoV-2 infection triggers a DA neuron inflammatory and cellular senescence response. A high-throughput screen in hPSC-derived DA neurons identified several FDA approved drugs, including riluzole, metformin, and imatinib, that can rescue the cellular senescence phenotype and prevent SARS-CoV-2 infection. RNA-seq analysis of human ventral midbrain tissue from COVID-19 patients, using formalin-fixed paraffin-embedded autopsy samples, confirmed the induction of an inflammatory and cellular senescence signature and identified low levels of SARS-CoV-2 transcripts. Our findings demonstrate that hPSC-derived DA neurons can serve as a disease model to study neuronal susceptibility to SARS-CoV-2 and to identify candidate neuroprotective drugs for COVID-19 patients. The susceptibility of hPSC-derived DA neurons to SARS-CoV-2 and the observed inflammatory and senescence transcriptional responses suggest the need for careful, long-term monitoring of neurological problems in COVID-19 patients.

8.
Cell Stem Cell ; 28(2): 343-355.e5, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545081

RESUMO

Human pluripotent stem cells show considerable promise for applications in regenerative medicine, including the development of cell replacement paradigms for the treatment of Parkinson's disease. Protocols have been developed to generate authentic midbrain dopamine (mDA) neurons capable of reversing dopamine-related deficits in animal models of Parkinson's disease. However, the generation of mDA neurons at clinical scale suitable for human application remains an important challenge. Here, we present an mDA neuron derivation protocol based on a two-step WNT signaling activation strategy that improves expression of midbrain markers, such as Engrailed-1 (EN1), while minimizing expression of contaminating posterior (hindbrain) and anterior (diencephalic) lineage markers. The resulting neurons exhibit molecular, biochemical, and electrophysiological properties of mDA neurons. Cryopreserved mDA neuron precursors can be successfully transplanted into 6-hydroxydopamine (6OHDA) lesioned rats to induce recovery of amphetamine-induced rotation behavior. The protocol presented here is the basis for clinical-grade mDA neuron production and preclinical safety and efficacy studies.


Assuntos
Neurônios Dopaminérgicos , Células-Tronco Embrionárias Humanas , Animais , Diferenciação Celular , Mesencéfalo , Ratos , Via de Sinalização Wnt
9.
Front Cell Dev Biol ; 8: 729, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903681

RESUMO

In Parkinson's disease (PD), there are currently no effective therapies to prevent or slow down disease progression. Cell replacement therapy using human pluripotent stem cell (hPSC)-derived dopamine neurons holds considerable promise. It presents a novel, regenerative strategy, building on the extensive history of fetal tissue grafts and capturing the potential of hPSCs to serve as a scalable and standardized cell source. Progress in establishing protocols for the direct differentiation to midbrain dopamine (mDA) neurons from hPSC have catalyzed the development of cell-based therapies for PD. Consequently, several groups have derived clinical-grade mDA neuron precursors under clinical good manufacture practice condition, which are progressing toward clinical testing in PD patients. Here we will review the current status of the field, discuss the remaining key challenges, and highlight future areas for further improvements of hPSC-based technologies in the clinical translation to PD.

10.
EMBO J ; 39(20): e103791, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32865299

RESUMO

The link between cholesterol homeostasis and cleavage of the amyloid precursor protein (APP), and how this relationship relates to Alzheimer's disease (AD) pathogenesis, is still unknown. Cellular cholesterol levels are regulated through crosstalk between the plasma membrane (PM), where most cellular cholesterol resides, and the endoplasmic reticulum (ER), where the protein machinery that regulates cholesterol levels resides. The intracellular transport of cholesterol from the PM to the ER is believed to be activated by a lipid-sensing peptide(s) in the ER that can cluster PM-derived cholesterol into transient detergent-resistant membrane domains (DRMs) within the ER, also called the ER regulatory pool of cholesterol. When formed, these cholesterol-rich domains in the ER maintain cellular homeostasis by inducing cholesterol esterification as a mechanism of detoxification while attenuating its de novo synthesis. In this manuscript, we propose that the 99-aa C-terminal fragment of APP (C99), when delivered to the ER for cleavage by γ-secretase, acts as a lipid-sensing peptide that forms regulatory DRMs in the ER, called mitochondria-associated ER membranes (MAM). Our data in cellular AD models indicates that increased levels of uncleaved C99 in the ER, an early phenotype of the disease, upregulates the formation of these transient DRMs by inducing the internalization of extracellular cholesterol and its trafficking from the PM to the ER. These results suggest a novel role for C99 as a mediator of cholesterol disturbances in AD, potentially explaining early hallmarks of the disease.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Animais , Linhagem Celular , Colesterol/biossíntese , Retículo Endoplasmático/genética , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Células-Tronco Pluripotentes Induzidas , Metabolismo dos Lipídeos , Lipidômica , Camundongos , Mitocôndrias/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismo , Domínios Proteicos , RNA Interferente Pequeno , Esfingomielina Fosfodiesterase/metabolismo
11.
Nat Commun ; 10(1): 53, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604771

RESUMO

CRISPR/Cas9 guided gene-editing is a potential therapeutic tool, however application to neurodegenerative disease models has been limited. Moreover, conventional mutation correction by gene-editing would only be relevant for the small fraction of neurodegenerative cases that are inherited. Here we introduce a CRISPR/Cas9-based strategy in cell and animal models to edit endogenous amyloid precursor protein (APP) at the extreme C-terminus and reciprocally manipulate the amyloid pathway, attenuating APP-ß-cleavage and Aß production, while up-regulating neuroprotective APP-α-cleavage. APP N-terminus and compensatory APP-homologues remain intact, with no apparent effects on neurophysiology in vitro. Robust APP-editing is seen in human iPSC-derived neurons and mouse brains with no detectable off-target effects. Our strategy likely works by limiting APP and BACE-1 approximation, and we also delineate mechanistic events that abrogates APP/BACE-1 convergence in this setting. Our work offers conceptual proof for a selective APP silencing strategy.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Edição de Genes/métodos , Terapia Genética/métodos , Doenças Neurodegenerativas/terapia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/citologia , Encéfalo/patologia , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Neurônios , Técnicas Estereotáxicas , Transfecção , Resultado do Tratamento
12.
Sci Signal ; 10(504)2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29114037

RESUMO

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and autism spectrum disorder. FXS is caused by silencing of the FMR1 gene, which encodes fragile X mental retardation protein (FMRP), an mRNA-binding protein that represses the translation of its target mRNAs. One mechanism by which FMRP represses translation is through its association with cytoplasmic FMRP-interacting protein 1 (CYFIP1), which subsequently sequesters and inhibits eukaryotic initiation factor 4E (eIF4E). CYFIP1 shuttles between the FMRP-eIF4E complex and the Rac1-Wave regulatory complex, thereby connecting translational regulation to actin dynamics and dendritic spine morphology, which are dysregulated in FXS model mice that lack FMRP. Treating FXS mice with 4EGI-1, which blocks interactions between eIF4E and eIF4G, a critical interaction partner for translational initiation, reversed defects in hippocampus-dependent memory and spine morphology. We also found that 4EGI-1 normalized the phenotypes of enhanced metabotropic glutamate receptor (mGluR)-mediated long-term depression (LTD), enhanced Rac1-p21-activated kinase (PAK)-cofilin signaling, altered actin dynamics, and dysregulated CYFIP1/eIF4E and CYFIP1/Rac1 interactions in FXS mice. Our findings are consistent with the idea that an imbalance in protein synthesis and actin dynamics contributes to pathophysiology in FXS mice, and suggest that targeting eIF4E may be a strategy for treating FXS.


Assuntos
Actinas/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4G em Eucariotos/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Espinhas Dendríticas/efeitos dos fármacos , Modelos Animais de Doenças , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4G em Eucariotos/antagonistas & inibidores , Fator de Iniciação 4G em Eucariotos/genética , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Hidrazonas/farmacologia , Hidrazonas/uso terapêutico , Masculino , Transtornos da Memória/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Tiazóis/farmacologia , Tiazóis/uso terapêutico
13.
Neurobiol Dis ; 83: 67-74, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26306459

RESUMO

Autism spectrum disorder (ASD) is a group of heritable disorders with complex and unclear etiology. Classic ASD symptoms include social interaction and communication deficits as well as restricted, repetitive behaviors. In addition, ASD is often comorbid with intellectual disability. Fragile X syndrome (FXS) is the leading genetic cause of ASD, and is the most commonly inherited form of intellectual disability. Several mouse models of ASD and FXS exist, however the intellectual disability observed in ASD patients is not well modeled in mice. Using the Fmr1 knockout mouse and the eIF4E transgenic mouse, two previously characterized mouse models of fragile X syndrome and ASD, respectively, we generated the eIF4E/Fmr1 double mutant mouse. Our study shows that the eIF4E/Fmr1 double mutant mice display classic ASD behaviors, as well as cognitive dysfunction. Importantly, the learning impairments displayed by the double mutant mice spanned multiple cognitive tasks. Moreover, the eIF4E/Fmr1 double mutant mice display increased levels of basal protein synthesis. The results of our study suggest that the eIF4E/Fmr1 double mutant mouse may be a reliable model to study cognitive dysfunction in the context of ASD.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/psicologia , Transtornos Cognitivos/genética , Modelos Animais de Doenças , Fator de Iniciação 4E em Eucariotos/fisiologia , Proteína do X Frágil de Retardo Mental/fisiologia , Memória/fisiologia , Animais , Ansiedade/genética , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Fator de Iniciação 4E em Eucariotos/genética , Medo/fisiologia , Proteína do X Frágil de Retardo Mental/genética , Hipocampo/metabolismo , Relações Interpessoais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação
14.
Brain Res ; 1415: 96-102, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21872217

RESUMO

Fyn is a Src-family tyrosine kinase that affects long term potentiation (LTP), synapse formation, and learning and memory. Fyn is also implicated in dendritic spine formation both in vitro and in vivo. However, whether Fyn's regulation of dendritic spine formation is brain-region specific and age-dependent is unknown. In the present study, we systematically examined whether Fyn altered dendritic spine density and morphology in the cortex and hippocampus and if these effects were age-dependent. We found that Fyn knockout mice trended toward a decrease in dendritic spine density in cortical layers II/III, but not in the hippocampus, at 1 month of age. Additionally, Fyn knockout mice had significantly decreased dendritic spine density in both the cortex and hippocampus at 3 months and 1 year, and Fyn's effect on dendritic spine density was age-dependent in the hippocampus. Moreover, Fyn knockout mice had wider spines at the three time points (1 month, 3 months, 1 year) in the cortex. These findings suggest that Fyn regulates dendritic spine number and morphology over time and provide further support for Fyn's role in maintaining proper synaptic function in vivo.


Assuntos
Córtex Cerebral/citologia , Dendritos/ultraestrutura , Espinhas Dendríticas/patologia , Hipocampo/citologia , Neurônios/ultraestrutura , Proteínas Proto-Oncogênicas c-fyn/deficiência , Fatores Etários , Animais , Dendritos/patologia , Espinhas Dendríticas/ultraestrutura , Camundongos , Camundongos Knockout , Neurônios/patologia
15.
J Microbiol Biotechnol ; 20(3): 587-93, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20372032

RESUMO

Three hundred and seventy-four rhizobacteria were isolated from the rhizosphere soil (RS) or rhizoplane (RP) of Echinochloa crus-galli, Carex leiorhyncha, Commelina communis, Persicaria lapathifolia, Carex kobomugi, and Equisetum arvense, grown in contaminated soil with petroleum and heavy metals. The isolates were screened for plant growth-promoting potential (PGPP), including indole acetic acid (IAA) productivity, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and siderophore(s) synthesis ability. IAA production was detected in 86 isolates (23.0%), ACC deaminase activity in 168 isolates (44.9%), and siderophore(s) synthesis in 213 isolates (57.0%). Among the rhizobateria showing PGPP, 162 rhizobacteria had multiple traits showing more than two types of PGPP. The PGPP-having rhizobateria were more abundant in the RP (82%) samples than the RS (75%). There was a negative correlation (-0.656, p < 0.05) between the IAA-producers and the ACC deaminase producers. Clustering analysis by principal component analysis showed that RP was the most important factor influencing ecological distribution and physiological characterization of PGPP-possesing rhizobateria.


Assuntos
Carbono-Carbono Liases/metabolismo , Ácidos Indolacéticos/metabolismo , Rhizobium/metabolismo , Sideróforos/biossíntese , Microbiologia do Solo , Poluentes do Solo/isolamento & purificação , Carbono-Carbono Liases/análise , Ácidos Indolacéticos/análise , Análise de Componente Principal , Sideróforos/análise , Poluentes do Solo/química
16.
J Microbiol Biotechnol ; 19(11): 1431-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19996698

RESUMO

The role of plant growth-promoting rhizobacteria (PGPR) in the phytoremediation of heavy-metal-contaminated soils is important in overcoming its limitations for field application. A plant growth-promoting rhizobacterium, Serratia sp. SY5, was isolated from the rhizoplane of barnyard grass (Echinochloa crus-galli) grown in petroleum and heavy-metal-contaminated soil. This isolate has shown capacities for indole acetic acid production and siderophores synthesis. Compared with a non-inoculated control, the radicular root growth of Zea mays seedlings inoculated with SY5 can be increased by 27- or 15.4-fold in the presence of 15 mg-Cd/l or 15 mg-Cu/l, respectively. The results from hydroponic cultures showed that inoculation of Serratia sp. SY5 had a favorable influence on the initial shoot growth and biomass of Zea mays under noncontaminated conditions. However, under Cd-contaminated conditions, the inoculation of SY5 significantly increased the root biomass of Zea mays. These results indicate that Serratia sp. SY5 can serve as a promising microbial inoculant for increased plant growth in heavy-metal-contaminated soils to improve the phytoremediation efficiency.


Assuntos
Serratia , Zea mays , Biodegradação Ambiental , Biomassa , Cádmio/química , Cádmio/metabolismo , Echinochloa/microbiologia , Hidroponia , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/microbiologia , Serratia/isolamento & purificação , Serratia/fisiologia , Sideróforos/biossíntese , Microbiologia do Solo , Poluentes do Solo/química , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...